

Acknowledgements

- Professor Donald Dabdub (*University of California at Irvine*)
- South Coast Air Quality Management District

Presentation Overview

- Summary of Previous (Preliminary) Analysis
- What's New
- Health Effects & Updated Air Quality Impacts
- Corroborative Analyses
- Summary and Conclusions

Summary of Previous Analysis

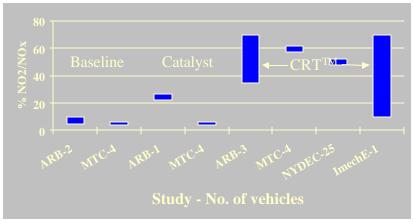
- Emission Assumptions:
 - 100% penetration of passive traps
 - 50% diesel NO₂ (NO_x mass unchanged)
 - Sensitivity analyses for aldehydes and VOCs
- Modeling:
 - Summer episode for southern California only
 - No PM modeling

Summary of Previous Analysis

(cont.)

- Results:
 - Ozone:
 - 4-7% increase in high ozone areas (11 ppb max.)
 - Zero diesel aldehydes reduces max. increase to 9 ppb
 - Zero diesel NMHCs reduces max. increase to 6 ppb
 - $-NO_2$:
 - ~22% increase in one small area
 - ~5% increase in other areas
 - · Remains below health-based standard

Summary of Previous Analysis


(cont.)

- Results (*cont.*):
 - Nitric acid (24-hour):
 - 6-12% increase (1.7 ppb)
 - Nitric-acid derived PM (24-hour):
 - $\sim 5.5 \mu g/m^3$ increase
- Conclusion:
 - Potentially significant air quality disbenefits associated with traps

What's New?

Summary of Diesel NO₂/NO_x Studies

• In a catalyst plus soot filter system, the conversion of NO to NO₂ is a function of both exhaust temperature and fuel sulfur content.

What's New?

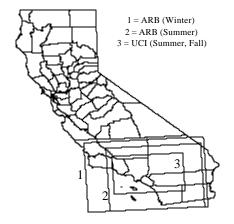
Exhaust Emissions

- Exhaust Emissions:
 - 90% penetration of passive traps
 - NO_x speciation changes considered:

	NO	NO ₂	HONO
Baseline: NO ₂ =10%	88%	10%	2%
NO ₂ =15%	83%	15%	2%
NO ₂ =20%	78%	20%	2%
NO ₂ =25%	73%	25%	2%
NO ₂ =30%	68%	30%	2%
NO ₂ =50%	48%	50%	2%

What's New?

Exhaust Emissions (cont.)


- Exhaust emissions (cont.):
 - Other assumed emission reductions:

	% Reduction	<u>Study</u>
CO	90%	various
Total PM	85%	various
Total HCs	90%	various
Total carbonyls	90%	MTC
Formaldehyde	93%	MTC
Acetaldehyde	82%	MTC
Benzene	77%	ARB
Total PAHs	80%	NYDEC
nitro-PAHs	95%	NYDEC

What's New?

Episodes Simulated

• Summer (August), Fall (October), and Winter (~January) episodes for southern California

Emissions in Southern California

(Summer 2010 Episode, TPD)

		Baseline	Wit	With Passive Traps		
	Diesel NO ₂ /NO _x	10%	15%	30%	50%	
ALL SOURCES	NO_x	1,579	1,579	1,579	1,579	
	NO	906	888	833	762	
	NO_2	158	186	269	379	
	HONO	32	32	32	32	
		5 000	- 0-0			
	CO	6,092	5,953	5,953	5,953	
	Biogenic ROG	892	892	892	892	
	Anthro. ROG	1,257	1,224	1,224	1,224	
Diesels	NO_x	613	613	613	613	
	NO_2	61	89	172	282	
	<u> </u>	172	31	31	31	
	CO	1/2	31	31	31	
	ROG	42	8	8	8	

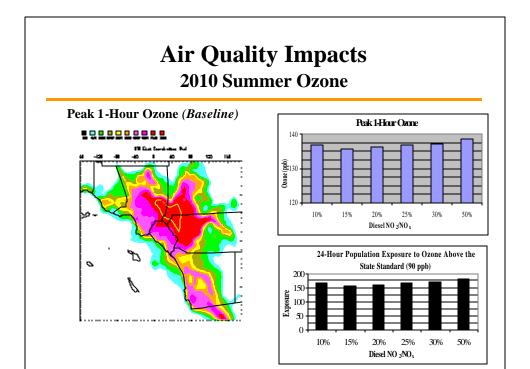
Emissions in Southern California

(Winter 2010 Episode, TPD)

		Baseline	Wit	With Passive Traps			
	Diesel NO ₂ /NO _x	10%	15%	30%	50%		
ALL SOURCES	NO _x	1,295	1,295	1,295	1,295		
	NO	743	726	674	606		
	NO ₂	130	156	235	340		
	HONO	26	26	26	26		
	PM _{2.5}	263	244	244	244		
	CO	4,883	4,768	4,768	4,768		
	Biogenic ROG	290	290	290	290		
	Anthro. ROG	1,019	988	988	988		
Diesels	NO _x	583	583	583	583		
	NO ₂	58	85	163	268		
	PM _{2.5}	24	5	5	5		
	CO	158	30	30	30		
	ROG	39	7	7	7		

Air Quality Impacts Pollutants and Air Quality Indicators

Pollutants


- Ozone (Summer)
- Nitric Acid (Summer)
- NO₂ (Winter)
- PM_{2.5} (Summer, Fall)

Air Quality Indicators

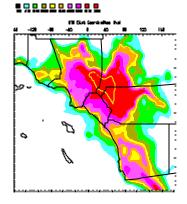
- Change in peak value
- Cumulative 24-hour population exposure:

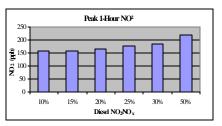
Air Quality Impacts Ozone - Health Effects

- <u>Current standards</u>:
 - State: 0.09 ppm (90 ppb) for 1-hour average
 - National: 0.12 ppm (120 ppb) for 1-hour average
- Mainly <u>acute effects</u> at and below the standard:
 - airway inflammation
 - cough
 - chest tightness
 - reduced pulmonary function
 - increased respiratory symptoms
 - may cause and exacerbate asthma

Air Quality Impacts Nitric Acid - Health and Welfare Effects

- No standard
 - 1-hour peaks typically 30 ppb or less
- Short-term exposure:
 - No apparent acute health risk with exposure to ambient concentrations
- Long-term exposure:
 - Effects unclear
 - Possible association with decreased lung function growth in children
- Welfare effects:
 - Nitrogen loading of pristine lakes and forest soils

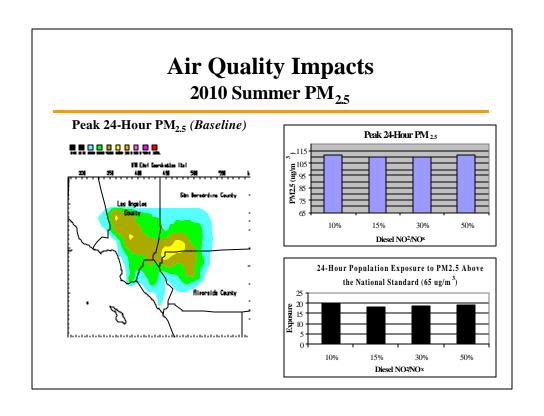

Air Quality Impacts NO₂ - Health Effects

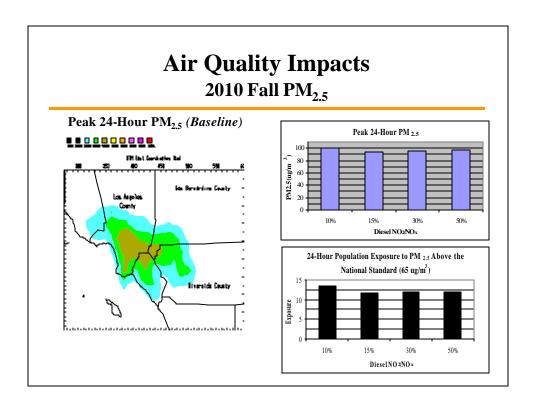

Diesel NO2/NOx

- Current standard:
 - State: 0.25 ppm (250 ppb) for 1-hour average
- <u>Short and long-term exposures</u> at concentrations at and below the standard:
 - Mortality
 - Respiratory symptoms
 - Respiratory illness
 - Reduced lung function
- May exacerbate <u>asthma</u> at concentrations at or below the standard

Air Quality Impacts 2010 Winter NO₂

Peak 1-Hour NO₂ (Baseline)

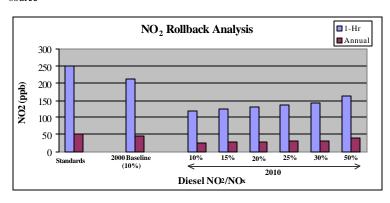



1-Hr NO2 standard = 250 ppb

 NO_2 Exposure = 0 (all model estimates less than the standard)

Air Quality Impacts PM_{2.5} - Health Effects

- Current standard:
 - National: 65 μg/m³ for 24-hour average
- Short and long-term exposures at concentrations at and below the standard:
 - Increased mortality
 - Increased hospital admissions
 - Respiratory illness
 - Asthma exacerbation
 - Reduced lung function
 - Respiratory symptoms
- <u>Diesel PM</u> (~90-95% PM_{2.5})
 - Identified as a toxic air contaminant
 - Previous studies have shown that diesel PM contributes ~70% of known ambient cancer risk in southern California


Corroborative Analyses

- Air quality modeling of trap effects in Central California:
 - Shows similar effects
 - No ozone benefits at low NO₂/NO_x
 - Less response to winter NO₂ increases
 - No PM analysis
- UC Irvine modeling results for ozone, nitric acid, NO₂:
 - Relative changes consistent with results presented today

Corroborative Analyses

(cont.)

- NO₂ rollback:
 - Ignores Banning Airport high levels related to interference from local nitric acid source

Summary of Impacts

Diesel NO ₂ /NO _x	15%	20%	25%	30%	50%
SUMMER	% change from baseline (diesel NO2/NOx = 10%)				
Peak 1-Hr O ₃	-1	0	0	0	1
24-Hr O₃ Exposure > 90 ppb	-3	-2	0	2	5
Peak 24-Hr HNO ³	0	1	1	1	2
24-Hr HNO3 Exposure	0	0	2	2	4
Peak 24-Hour PM _{2.5}	-3	N/A	N/A	-2	-1
24-Hour PM ^{2.5} Exposure > 65 ug/m	-9	N/A	N/A	-8	-6
FALL					
Peak 24-Hour PM2.5	-6	N/A	N/A	-5	-3
24-Hour PM _{2.5} Exposure > 65 ug/m ³	-13	N/A	N/A	-13	-13
WINTER	WINTER				
Peak 1-Hr NO ₂	1	6	12	18	41

Numbers in **bold** represent simulated air quality benefits or no change

Summary of Impacts

(cont.)

- For modest increases in diesel NO_2 (diesel $NO_2/NO_x \sim 20-25\%$):
 - Ozone:
 - Air quality benefits or no change in both peak 1-hour and 24-hour exposure indicators
 - Nitric acid:
 - ~1% increase in 24-hour peak, max. 2% increase in exposure
 - No standard; short-term health implications of small increases unlikely; long-term health implications unclear
 - <u>NO</u>₂:
 - 6-12% increases
 - · Rollback analysis estimates no exceedances of standard
 - <u>PM</u>_{2.5}:
 - · Air quality benefits for all scenarios
 - · Direct reduction in diesel PM provides reductions in ambient cancer risk

Conclusions

- These results supercede the previously presented preliminary analysis:
 - Updated emissions assumptions
 - More rigorous analysis
- A modest increase in the diesel NO₂ fraction has more benefits than disbenefits

THE END